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Executive Summary 
The objectives of this initial phase of the project were to utilize the NSCC’s Chiroptera II topo-bathymetric lidar to 

capture detailed topography and imagery along the coastal zone and use it to better inform emergency 

preparedness officials of the conditions. The data acquired with this instrument allows for the construction of a 

high resolution seamless elevation model that transitions from the land into the sea. In addition to this seamless 

DEM that was derived from the lidar survey, high quality image data were acquired from two cameras: a 60 MPIX 

RCD30 capable of visible RGB and NIR and a 5 MPIX quality assurance camera. Staff from ECRC, who where 

instrumental in identifying the limitations and the lack of nearshore current information and accurate up to date 

maps on tidal inlets and other sensitive areas for oil spill preparedness, assisted in deploying an ADCP to collect 

water level and current data for one month to compare to model results. In addition ECRC’s vessle and an AGRG 

vessel were deployed to collect ground truth data during the July 6 aerial campaign. These data consisted of 

bottom photographs, water clarity measures using a secchi disk, survey grade GPS bottom elevations and tidal 

inlet geometry and currents using a RiverRay ADCP. The seamless DEM was integrated with other bathymetry 

data to establish multiple domains and a hydrodynamic model was constructed that used the predicted tidal 

elevation as its boundary condition. The model used a nested grid and was scaled to a resolution of 3 m within 

the Cow Bay domain. The hydrodynamic model was validated against the bottom ACDP data for water levels and 

currents. Once satisfied with the hydrodynamics of the model, several particle tracking runs were simulated to 

estimate the trajectory of contaminants if a spill where to occur offshore. Characteristics of heavy, medium and 

light oil were initially used in the model. Only light oil was simulated for the local domain near Cow Bay where it 

was released approximately 2 km offshore and under normal tidal conditions took 14 hours to make landfall and 

impact the tidal inlet. This time was significantly reduced to only 3 hours when the model had a 30 knot landward 

wind imposed on it in order to visualize the effects of surface winds on the nearshore currents and the fate of the 

contaminants. The high resolution elevation data provided by the topo-bathymetric lidar survey allowed detailed 

currents to be generated nearshore to allow such simulations. In addition to the elevation and hydrodynamic 

models, the imagery and lidar were used to construct bottom and shoreline classified maps. The exposed 

shoreline materials where classified based on texture and spectral characteristics which allowed boulders and 

cobble to be separated from sand, which impacts the ability to clean such material if contaminated, as well as 

sensitive vegetated habitat. A full bottom classification of multiple submerged aquatic vegetation (SAV) and 

substrate types as well as a simplified SAV presence-absence map was derived with an 83% accuracy compared to 

ground truth data. This project has demonstrated the wide breadth of information products that can be derived 

from a single topo-bathymetric survey and demonstrated how these nearshore data can enhance our ability to 

model currents and predict the fate of contaminants and map the exposed and submerged materials to aid the 

spill preparedness community. 
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1 Introduction 
 

The Atlantic coast exhibits a variety of shorelines that may be vulnerable to contamination in event of an offshore 

spill. From an oil spill response perspective, protecting highly dynamic and biologically rich tidal inlets poses a 

particular challenge for responders compared to more accessible linear sections of the coast. Variable currents, 

changing water levels, shoals, and exposed seaside conditions together make effective response difficult for tidal 

inlets. Protecting tidal inlets is important, as the associated sheltered back bays often feature highly productive salt 

marsh and tidal-flat environments that are very sensitive to oil spills. Information related to tidal inlet morphology 

is limited or out-of-date, and no information regarding water current speeds and bathymetry is available to aid 

response organizations in planning to respond to a spill in this environment. This lack of information also presents 

risks to the health and safety of first responders with respect to secure access and safe navigation in light of shifting 

channels and shoals, unpredictable currents, etc. This project was designed to utilize new mapping technology to 

address these limitations and was funded by the Canadian Association of Petroleum Producers (CAPP) with 

contributions from Shell Canada, BP and the Offshore Energy Research Association (OERA) with in-kind support 

from Eastern Canada Response Corporation (ECRC), a marine oil spill response organization.  

 

The ECRC provides marine oil spill response strategies and cleanup for most navigable waters east of the Rocky 

Mountains. They deliver planning, equipment, resources, and management for spill cleanups during both 

emergency response events and longer term remediation and rehabilitation projects. The ECRC had suggested that 

a more detailed understanding of nearshore bathymetry and current patterns would significantly aid in emergency 

spill planning and response. The primary outcome of this project was a more comprehensive knowledge of 

nearshore tidal inlet hydrodynamics. This will allow ECRC to more effectively contain and recover oil in the marine 

environment, before it makes landfall. This in turn results in cost savings while reducing health and safety risks. 

In order to generate detailed maps of the shallow nearshore zone where the use of traditional bathymetric methods 

is limited, Nova Scotia Community College (NSCC) has conducted a survey using an innovative airborne lidar system 

to collect surface and shallow submarine topographic data. We then used these bathymetric data in a 

hydrodynamic model to predict water movement (and by extension nearshore oil dispersion) adjacent to a complex 

marine tidal inlet system. A ground truthing campaign was conducted which involved the deployment of an 

Acoustic Doppler Current Profiler (ADCP) in Cow Bay for one month. In addition, two boats were employed to 

collect water clarity samples, seabed cover photos, and survey grade GPS seabed measurements, as well as to 

measure the current in the inlet using a RiverRay ADCP. Other areas along the south shore of Nova Scotia will be 

surveyed in future project phases, and these techniques applied. 
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1.1 Study Area 
 
The study area of Cow Bay was selected for the initial phase of this project for two main reasons: 1) it is a typical 

bay with a tidal inlet that connects the ocean to a sensitive salt marsh, and 2) its close proximity to Halifax to 

facilitate the involvement of ECRC staff and equipment for field work. AGRG researchers worked with ECRC staff 

and a vessel to deploy and retrieve the Acoustic Doppler Current profiler (ADCP) on the bottom and also 

conducted in-situ data collection during the lidar flight. The lidar and photo survey covered a larger area than 

depicted in Figure 1. The total area of the survey was 11.36 sqkm. 

 
Figure 1: The topographic-bathymetric lidar study area west of Halifax Harbour. (Basemap source: GeoNova 
Topographic Database and NRCan NTS map) 

2 Methods 
 

2.1 Sensor Specifications 
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The lidar sensor used in this study is a Chiroptera II integrated topographic-bathymetric lidar sensor equipped 

with a 60-megapixel multispectral camera. The system incorporates a 1064 nm near-infrared laser for ground 

returns and sea surface and a green 515 nm laser for bathymetric returns (Figure 2, Figure 3d). The lasers scan in 

an elliptical pattern, which enables coverage from many different angles on vertical faces, causes less shadow 

effects in the data, and is less sensitive to wave interaction. The bathymetric laser is limited by depth and clarity, 

and has a depth penetration rating of roughly 1.5 x the Secchi depth (a measure of turbidity or water clarity using 

a black and white disk). The Leica RCD30 60 mpix camera (Figure 3d) collects co-aligned RGB+NIR motion 

compensated photographs which can be mosaicked into a single image in post-processing, or analyzed frame by 

frame for maximum information extraction.  

 

Figure 2: (A) Example of the Chiroptera II green laser waveform showing the large return from the sea surface 
and smaller return from the seabed. (B) Schematic of the Chiroptera II green and NIR lasers interaction with the 
sea surface and seabed (adapted from Leica Geosystems).  
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Figure 3: (a) Aircraft used for 2016 lidar survey; (b) display seen by lidar operator in-flight; (c) main body of 
sensor (right) and the data rack (left); (d) large red circles are the lasers; the RCD30 lens (right) and low 
resolution camera quality control (left). 

 

2.2 Lidar Survey Details 
    
AGRG partnered with Leading Edge Geomatics to assist in the survey operations and arranging the aircraft (AGRG-

NSCC does not own an aircraft, only the sensor). The lidar sensor was installed in the twin engine aircraft in 

Fredericton, NB and calibration flights were conducted over Fredericton at altitudes of 400m and 1000m. The lidar 

survey was conducted using the Chiroptera II sensor on July 6 2016. The survey was planned using Mission Pro 

software and was flown at an altitude of 400 m above ground. The aircraft required ground-based high precision 

GPS data to be collected during the lidar survey in order to provide accurate positional data for the aircraft 

trajectory. The Nova Scotia Active Control Stations (NSACS) network was used to provide geodetic control and a 

GNSS base station during the survey was used to process the trajectory of the survey aircraft (Figure 4). An 

additional Leica GS14 RTK GPS system was used to establish a local base station for real-time kinematic collection of 

ground truth data within the study area. 
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Figure 4: Aircraft trajectory and flight lines for 2016 lidar survey in Cow Bay. 

 

2.3 Ground Truth Data Collection 
 
Ground truth data collection is a crucial aspect of topo-bathymetric lidar surveys. In July 2016, AGRG researchers 

conducted traditional ground truth data collection including hard surface validation and depth measurements to 

validate the lidar, Secchi depth measurements for information on water clarity, and underwater photographs to 
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obtain information on bottom type and vegetation (Figure 5). Additional hard surface GPS points were collected 

for validation in September 2016 using the cellular active control network for precise GPS accuracy (Figure 5). 

During the July ground truth collection, the seabed elevation was measured directly using a large pole onto which 

the RTK GPS was threaded, in addition to manual measurements using a depth mate and a lead ball on a graduated 

rope, in addition to a commercial-grade single beam echo sounder. By threading the RTK GPS antenna on the pole 

and measuring the elevation of the seabed directly we eliminated errors introduced into depth measurements 

obtained from a boat such as those caused by wave action, tidal variation, and angle of rope for lead ball drop 

measurements. Table 1 summarizes the ground truth measurements undertaken for Cow Bay in 2016 and Figure 5 

shows a map of the distribution of ground truth measurements. 

 

Figure 5: Location of hard surface GPS validation points (green), and boat-based ground truth points from AGRG 
(red) and ECRC (blue), and ADCP deployment location at Cow Bay. 
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Date 

Base 

Station 

(id) or * 

GPS System 

(GS14 or 

530/1200) 

Secchi (Y 

or -) 

Depth 

(see 

caption 

for 

options) 

ADCP 

(Deployed, 

-, or 

Retrieved) 

Underwater 

Photos (see 

caption for 

options) 

Hard 
Surface 

GPS (Y or -
) 

 

RiverRay 
(Y or -) 

Jun 29  204599 530 - P - - - 
Y 

Jun 30 204599 GS14 - - Deployed - Y 
- 

Jul 06 204599 GS14,1200 Y P,DM,M  Q50 - 
Y 

Sep 15 * GS14 - - - - Y 
- 

Table 1: Ground truth data summary. Base Station Column: * Indicates the Nova Scotia Active Control Stations 
(NSACS) cellular network was used. GPS Column: The Leica GPS systems used were the GS14, 530 and the 1200. 
Depth Column: P=GPS antenna threaded onto the large pole for direct bottom elevation measurement; 
M=manual depth measurement using lead ball or weighted Secchi disk; DM=handheld single beam DepthMate 
echo sounder. Underwater Photos: Q50=0.25 m2 quadrat with downward-looking GoPro camera. 

As mentioned in the ground truth summary above, on July 6 2016, AGRG researchers conducted ground truth data 

collection to coincide with the lidar survey. One field team deployed the RiverRay ADCP to capture the inlet cross-

section and measure the flow (Error! Reference source not found.). The RiverRay ADCP is mounted in a small boat 

that is towed across the inlet channel to measure the cross-section and flow within the channel.  
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Multiple transects were collected with the RiverRay and different locations along the tidal inlet channel. The 

system is equipped with a GPS receiver and measures the cross-sectional depth and flow for the channel (Figure 

7). 

Figure 6: Quality Assurance (QA) camera mosaic in background of the tidal inlet at Cow Bay. Inset 
photos show the RiverRay (orange boat) being deployed across the channel. 
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Figure 7: RiverRay transect locations collected on July 6. Background image is the 5 cm orthophoto from the 
RCD30 camera system. The detail is sufficient to actually see the RiverRay instrument (inset image). 

 

The ground truth collection by AGRG and ECRC boats on July 6 were successful in retrieving depth measurements, 

as well as gathering information on water clarity, bottom type and vegetation. Underwater photos were captured 

using a 0.25 m2 quadrat with a downward-looking GoPro camera (Figure 8). The inset images show a presence of 

kelp and cobble, though these results will be highlighted further in Section 3.3. As mentioned above, RiverRay was 

deployed across the channel; Figure 8c illustrates the log sheet used by AGRG researchers during the RiverRay 

transect collections. It is important to document the transect number and start time as well as left and right banks, 

although the GPS can be used for positioning as well.  
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Figure 8: Ground truth collection at Cow Bay in July 2016. (a) and (d) Ground truth imagery results from quadrat, 
(b) Submerged quadrat collecting ground truth imagery, (c) RiverRay field log sheet to show an example of field 
collection, (e) AGRG researchers establishing a base station over benchmark, (f) AGRG researchers deploying 
RiverRay, (g) AGRG and ECRC field teams collaborating. 

The variety of ground truth data collected in Cow Bay provides valuable data for the validating the lidar, as well as 

data to support other analyses such as bottom type and classification maps. Figure 9 illustrates the hard surface 

GPS points collected for validation in September 2016.  The GNSS active control network was used for correction of 

the precise GPS survey data. These data were used to validate the vertical accuracy of the lidar DEM and can be 

found in the results section.  

 

(a) (b) (c) 

(d) 

(e) 

(f) 

(g) 
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Figure 9: Additional hard surface validation points were collected in Cow Bay in September 2016. 

 
Figure 10 illustrates the different types of ground-truth data that were collected including precise GPS 

measurements of the seabed, Secchi depth locations, quadrat photos of the seabed cover material as well as some 

inset photos showing examples of the quadrat photos and the ADCP location. The background map is a colour 

shaded relief image derived from the lidar survey (Figure 10). The inset photos of the pole and quadrat are shown 

from the GoPro’s perspective, as well as the deployed Secchi disk. Additional maps and ground truth results are 

highlighted in Section 3.3. 
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Figure 10: An overview example of ground truth data collected. Results are further discussed in the section 
below. 

 

2.4 Time of Flight Conditions 
 

Meteorological conditions during and prior to topo-bathy lidar data collection are an important factor in 

successful data collection. As the lidar sensor is limited by water clarity, windy conditions have the potential to 

stir up any fine sediment in the water and prevent laser penetration. Rain or fog are not suitable for lidar 

collection, and the reflection from the water (sun glint) must also be factored in for the collection of aerial 

photography. Before each lidar survey, we primarily monitored weather forecasts using four tools: the 

Environment Canada (EC) public forecast (http://weather.gc.ca/) (Figure 11); EC’s Marine Forecast 

(http://weather.gc.ca/marine/index_e.html); SpotWx (www.spotwx.com), which allows the user to enter a 

precise location and choose from several forecasting models of varying model resolution and forecast length; and 

the predicted fog for the lidar survey provided to AGRG every eight hours. Each of these tools had strengths and 

weaknesses and it was through monitoring all four that a successful lidar mission was achieved. For example, the 

customized EC forecast was the only tool that provided a fog prediction, on an hourly basis. However, the SpotWx 

graphical interface proved superior for wind monitoring. Only the EC public forecast alerted us to Weather 
 

http://weather.gc.ca/
http://weather.gc.ca/marine/index_e.html
http://www.spotwx.com/
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Warnings that were broadcast in real-time, such as thunderstorms, and the marine forecast provided the only 

information for offshore conditions. EC Canadian Marine Warning Program has 4 different threshold categories of 

wind warnings; strong wind warnings, issued when wind speeds of 20-30 knots are occurring or are expected, 

gale warnings, issued when wind speeds of 34-47 knots are occurring or are expected, storm warnings, issued 

when wind speeds of 48-63 knots are occurring or are expected, and hurricane force winds, issued when winds of 

64 knots or greater are occurring or are expected. (Environment Canada, 2014) Weather leading up to the survey 

was fairly steady with winds blowing to the North. Weather during the survey was overcast with 9-12 knot winds.  

 

 
Figure 11: Weather preceding and during the Cow Bay lidar survey. (a) Wind speed and (b) direction collected at 
the EC weather station at Halifax between June 30 and July 8, 2016 at 1-hr intervals. Panel (c) shows a vector 
plot of the wind, where the arrows point in the direction the wind is blowing, and the red box indicates the lidar 
survey duration. Panel (d) shows predicted tide at Cow Bay. The pink solid line represents the time of the survey 
that occurred on July 06. 

2.5 Acoustic Doppler Current Profiler (ADCP) 
 
A Teledyne RDI Sentinel V20 1000 kHz Acoustic Doppler Current Profiler (ADCP) was deployed at Cow Bay by AGRG 

and ECRC field teams on June 29th  to measure current speed and direction for a minimum of one month (Figure 
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12). On the day of the deployment, the weather was quite foggy, as can be seen in the inset photos in Figure 13. 

The ADCP was retrieved on July 29, 2016. The current data were obtained for hydrodynamic model validation. 

Water level data from the ADCP were also compared to the CHS predicted tide and the surface elevation of the 

ADCP agreed fairly well to the predicted tide. The tidal range was about 2m (Figure 14). The ADCP current was 

influenced by tidal circulation, as can be seen in Figure 15 and Figure 16. Currents ranged from 0.05 to -0.05 m/s in 

both the north-south and east-west directions (Figure 16). The vertical structure and magnitude of the currents 

varied throughout the tidal cycle, though the ADCP currents in the north-south direction were more consistent 

with the tidal cycle, rather than the currents in the east-west direction. Currents were generally stronger during 

the higher tide and lower in the lower tide, however in the east-west direction, currents varied from the tide much 

more. As an example, during the high tide on July 14, currents were weak in the east-west direction, inconsistent 

with the high tide, while the north-south currents were stronger, consistent with the high tide. The range in 

directions at that point in the tidal cycle was about 1m (Figure 16). 

 

 
Figure 12: Location of ADCP in Cow Bay and the route taken to deploy the ADCP. The white polygon represents 
the Cow Bay study area, Google Earth background image. 
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Figure 13: ECRC boat deploying ADCP in Cow Bay on June 29, 2016. Note foggy weather conditions pictured in 
upper left inset photo taken from the road looking towards the bay. 
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Figure 14: Example of water level measured by the ADCP (red line) compared with the CHS predicted tide (blue 
line) throughout the ADCP deployment in July 2016. 

 

 
Figure 15: Current speeds over time (x-axis) and depth (y-axis, measured as range from ADCP) for East-West 
currents (top panel) and North-South currents (bottom panel). Colours indicate magnitude and direction. 
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Figure 16: Observed surface elevation and depth averaged currents between July 13 and July 19 during a mixed 
semidiurnal tidal phase
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2.6 Elevation Data Processing 
 

2.6.1 Lidar processing 

2.6.1.1 Point Cloud Processing 

Once the GPS trajectory was processed for the aircraft using the Nova Scotia Active Control Stations (NSACS) 

network as a base station, where the aircraft GPS observations were combined with the inertial measurement unit 

to determine the trajectory in Inertial Explorer. Once determined the navigation data was linked to the laser 

returns and they were georeferenced. Lidar Survey Studio (LSS) software accompanies the Chiroptera II sensor and 

was used to process the lidar waveforms into discrete points. These data were then inspected to ensure sufficient 

overlap between flight lines (30%) and that no gaps existed in the lidar coverage. 

Integral to the processing of bathymetric lidar is the ability to map the water surface. The defined water surface is 

critical for two components of georeferencing the final target or targets that the reflected laser pulse recorded: 

the refraction of the light when it passes from the medium of air to water and the change in the speed of light 

from air to water. The LSS software computes the water surface from the lidar returns of both the topo (NIR) and 

bathy (green) lasers. In addition to classifying points as land, water surface or bathymetry, the system also 

computes a water surface that ensures the entire area of water surface is covered regardless of the original lidar 

point density. As previously mentioned, part of the processing involves converting the raw waveform lidar return 

time series into discrete classified points using LSS signal processing. Waveform processing may include algorithms 

specific to classifying the seabed. The points were examined in LSS both in planimetric and cross-section views. The 

waveforms for each point can be queried so that the location of the waveform peak can be identified and the type 

of point defined, for example water surface and bathymetry. 

The LAS files, the file type output from LSS, were then read into TerraScanTM with the laser returns grouped by 

laser type so they could be easily separated, analyzed and further refined. Because of the differences in the lidar 

footprint between the topo and bathy lasers, the bathy points are derived from the bathy green laser and the topo 

points that represent targets on the land were derived from the topo NIR laser. See Table 2 and the attached Data 

Dictionary report for the classification codes for the delivered LAS 1.2 files. The refined classified LAS files were 

read into ArcGISTM and a variety of raster surfaces at a 1 m spatial resolution were produced. 
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Class number Description 

0 Water model 

1 Bathymetry (Bathy) 

2 Bathy Vegetation 

3 N/A 

4 Topo laser Ground 

5 Topo laser  non-ground (vegetation & buildings) 

6 Hydro laser Ground 

7 Bathy laser non-ground 

8 Water 

9 Noise 

10 Overlap Water Model 

11 Overlap Bathy 

12 Overlap Bathy Veg 

13 N/A 

14 Overlap Topo Laser Ground 

15 Overlap Topo Laser Veg 

16 Overlap Bathy Laser Ground 

17 Overlap Bathy Laser Veg 

18 Overlap Water 

19 Overlap Noise 

Table 2. Lidar point classification Codes and descriptions. Note that ‘overlap’ is determined for points which are 
within a desired footprint of points from a separate flight line.  

2.6.1.2 Gridded Surface Models 

There were three main data products derived from the lidar point cloud. The first two were based on the elevation 

and include the Digital Surface Model (DSM), which incorporates valid lidar returns from vegetation, buildings, 

ground and bathymetry returns, and the Digital Elevation Model (DEM) which incorporates ground returns above 

and below the water line. The third data product was the intensity of the lidar returns, or the reflectance of the 

bathy laser. The lidar reflectance, or the amplitude of the returning signal from the bathy laser, is influenced by 

several factors including water depth, the local angle of incidence with the target, the natural reflectivity of the 

target material, the transmission power of the laser and the sensitivity of the receiver. 

2.6.1.3 Depth Normalization of the Green Laser Amplitude 

The energy that is transmitted into the water column by the green laser is exponentially lost with depth. The 

amplitude of the returning signal from the bathy laser provides a means of visualizing the seabed cover. However, 

the raw amplitude data are difficult to interpret because of variances as a result of signal loss due to the attenuation 

of the laser pulse through the water column at different scan angles and depths. Gridding the amplitude value from 

the bathy laser results in an image with a wide range of values that are not compensated for depth and have 

significant differences for the same target depending on depth and the local angle of incidence from flight line to 
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flight line. As a result, these data are not suitable for quantitative analysis and are difficult to interpret for qualitative 

analysis. A process has been developed to normalize the amplitude data for signal loss and is reported in a recent 

publication (Webster et al., 2016). The process involved sampling the amplitude data from a location with 

homogeneous seabed cover (e.g., sand or eelgrass) over a range of depths. These data were used to establish a 

relationship between depth and the amplitude value (Figure 17). The inverse of this relationship was used with the 

depth map to adjust the amplitude data so that they could be interpreted without the bias of depth. This map is 

referred to as a depth normalized intensity (DNI) image, is more consistent in tone, and can be interpreted for the 

seabed cover material. Note that this analysis considers only bathymetric lidar values and ignores any topographic 

lidar returns. 

 

Figure 17 Distribution of amplitude or lidar intensity values of the green laser with respect to depth for Cow 
Bay. 
 

2.6.1.4 Aerial Photo Processing 

The RCD30 60 MPIX imagery were processed using the aircraft trajectory and direct georeferencing. The low 

altitude and high resolution of the imagery required that the lidar data be processed first to produce bare-earth 
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digital elevation models (DEMs) that was used in the orthorectification process. The aircraft trajectory, which 

combines the GPS position and the IMU attitude information into a best estimate of the overall position and 

orientation of the aircraft during the survey is required for this process. This trajectory, which is linked to the laser 

shots and photo events by GPS based time tags, is used to define the Exterior Orientation (EO) for each of the 

RCD30 aerial photos acquired. The EO, which has traditionally been calculated by selecting ground control points 

(x, y, and z) locations relative to the air photo frame and calculating a bundle adjustment; however, in this case it 

was calculated using direct georeferencing and exploiting the high precision of the navigation system. The EO file 

defines the camera position (x, y, z) for every exposure as well as the various rotation angles about the x, y and z 

axis known as omega, phi and kappa. The EO file along with a DEM was used with the aerial photo to produce a 

digital orthophoto. After the lidar data were processed and classified into ground points, the lidar-derived DEM 

(above and below the water line) was used in the orthorectification process in Erdas Imagine software and 

satisfactory results were produced.  

The 5 MPIX Quality Assurance (QA) camera were also processed and georeferenced in a similar fashion as with the 

RCD30 photos. Although the resolution of the orthophotos of the QA camera is less than the RCD30, 20 cm as 

compared to 5 cm, the QA photos provide excellent information over water for the water column and seabed. 

 

2.6.2 Ellipsoidal to Orthometric Height Conversion 

The original elevation of any lidar product are referenced to the same elevation model as the GPS they were 

collected with. This model is a theoretical Earth surface known as the ellipsoid, and elevations referenced to this 

surface are in ellipsoidal height (GRS80). To convert them to orthometric height (OHt), which is height orthogonal 

to the geoid we utilize a geoid-ellipsoid separation model. In this case the elevations were corrected to the 

Canadian Geodetic Vertical Datum of 1928 (CGVD28) based on the geoid-ellipsoid separation model, HT2, from 

Natural Resources Canada. 

 

2.7 Bottom Type Classification 

The full cover types and the submerged aquatic vegetation (SAV) maps were derived from the lidar and QA 

orthophotos. The layers used included the water depth derived from the DEM and water surface at the time of 

flight, depth normalized intensity, and arithmetic combinations of the true-color QA camera orthophoto mosaic. As 

mentioned, the 20 cm QA photos provide a more consistent level of detail in the water than the RCD30 photos, so 

the QA photos were used in the seabed mapping (Figure 18). Ratios of the different RGB band differences and  

their sums were utilized in similar fashion as a traditional Normalized Difference Vegetation Index (NDVI) using red 

and NIR imagery. The bottom cover map represents an index of vegetation presence that is then further 
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interpreted for bottom vegetation type and substrate type. This complex map was then simplified to produce a 

simpler Submerged Aquatic Vegetation (SAV) as well. This method was used to classify the material that were 

submerged during the survey.  

 

 

Figure 18: Example of the 20cm QA orthophoto mosaic used in the bottom classification. 

Another classification method focused on the exposed shoreline material that may be vulnerable to contamination 

in the event of a spill. Here, texture and spectral details of the RCD30 imagery were used to classify the beach 

materials, which included true colour (Figure 19), and NIR false colour (Figure 20) and the details are discussed 

below. 
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Figure 19: Example of the RCD30 orthophoto mosaic in true colour RGB. 
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Figure 20: Example of the RCD30 orthophoto mosaic in false colour NIR to highlight the exposed vegetation. 

2.8 Shoreline Classification 
 

Shoreline substrates, such as cobble and sand, are defined by their grain sizes rather than their chemical 

compositions. This is due to the fact that they are typically derived from the same parent materials. As such, their 

spectral characteristics are quite similar and cannot be used as the sole basis for a robust classification. In order 

to achieve the latter, it is necessary to take image texture into account as well. In this analysis, image texture was 

quantified by means of a line density filter. In natural imagery, lines appear at the boundaries of objects (ex. 

boulders) and as such are analogous to edges. Theoretically, larger and brighter materials (ex. cobble) will 

produce stronger edges than finer ones (ex. sand), allowing them to be differentiated. This edge density raster 

was produced in the following way. Firstly, a series of line detectors were convolved over the image, detecting all 

lines oriented at 0, 45, 90, and 125 degree angles in the RCD30 imagery. This produced 4 different rasters per 

image frame, each representing the intensity of the edges in the image that shared that specific orientation. 
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These four rasters were averaged on a cell-by-cell basis and smoothed using a 9x9 mean filter to produce the final 

edge density raster. Iterating the line detector over different angles was necessary in order to ensure that the 

edge density metric was rotation-invariant, and as such sufficiently robust for use in the subsequent classification.  

A Normalized Difference Vegetation Index (NDVI) layer was also derived from the RCD30 imagery and included in 

the classification, which is calculated from the NIR and red bands. Firstly, it was used as a mask to narrow down 

the spatial extent of the region to be classified. Any image region with an NDVI above 0.40 was assumed to be 

vegetation and was therefore removed from further analysis. This greatly reduced the amount of data that 

needed to be processed, speeding up the analysis significantly. Once the image had been classified statistically, 

these high NDVI regions were defined as vegetation and appended to the classified image.   

 

The NDVI was also included in the classification. The rationale for this was as follows. Firstly, rocky materials have 

low NDVIs whereas vegetation tends to have very high NDVI values. As such, NDVI provides a concise descriptor 

of the amount of rocky material that is exposed in regions with vegetation cover (ex. swash zone). Rocky 

materials with vegetation on them tend to appear darker, and as such have weaker edges than they would 

without it. As such, based on the texture alone cobble with vegetation on it could statistically be closer to dry 

pebbles than it would be to dry cobble.  Adding the NDVI takes this phenomenon into account, increasing the 

reliability of the classified results.  

 

The NDVI and edge density rasters were then used in conjunction with multispectral RCD30 imagery bands in the 

context of a supervised Maximum Likelihood classification (Figure 21). In order to account for illumination 

changes over the course of the aerial survey, this classification was done on a per-flightline basis. This assumes 

that light and water conditions were unlikely to change significantly over the period of time needed to fly a single 

flightline. As such, the frames collected during a flightline are more similar in those respects to one another than 

they are to the frames of other flightlines. This greatly reduced the number of artifacts in the final classification, 

particularly if the imagery was acquired in variably cloudy conditions. One of the limitations of this approach was 

that it was difficult to reliably differentiate bedrock from similar classes. For example, very smooth bedrock was 

commonly confused for sand whereas rough bedrock was often mistaken for boulders. As such, the bedrock class 

was removed from the classification and outcrops of that nature were digitized manually. 
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Figure 21: Example of input bands for shoreline classification (Note: the NDVI is not included in the figure). 
 

2.9 Hydrodynamics and Particle Tracking 
 

Hydrodynamic (HD) models have been developed to predict the dispersion of contaminants within marine systems. 

These models are often not applicable in nearshore areas with complex hydrology due to a lack of suitable input data 

within the shallow coastal zone. However, it is precisely these areas where it is necessary to predict the dispersion 

of nearshore contaminants since they may enter bays and inlets that contain sensitive habitat that would be 

negatively impacted if the contaminants were to make landfall.  

A high-resolution 2-D hydrodynamic (HD) model was developed using the DHI Mike-21™ software module to 

simulate current flow and water level variations within the Cow Bay area. The Mike software includes the capability 

to simulate the transport and fate of dissolved and suspended substances discharged or accidentally spilled within 

the model domain. The required model inputs included a bathymetric surface and tidal predictions at the model 

boundaries that are described in detail in sections below. The domain of the bathymetric surface was designed to 

be large enough to simulate circulation within a large region around the area of interest. This regional approach 

helped to reduce errors inherent in the coarse tidal predictions.  
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2.9.1 Model Bathymetry Preparation 

A bathymetric surface model was developed to be used as an input to constrain 2D free-surface flow calculations.  

The surface was interpolated from the highest resolution bathymetric data available within the model domain. 

These data were from various sources and were collected at several resolutions (Table 3, Figure 22). 

 

 

Provider Data Source Resolution 

AGRG/CHS LIDAR 3 m  

NSDNR Rasterized 1:10 000 Contour Data 20 m 

CHS Echo soundings, digitized paper charts Various resolutions 

GSC Compiled satellite-derived gravity & soundings  750 m 

Table 3 HD model bathymetric data sources and resolutions. NSDNR: Nova Scotia Department of Natural 
Resources; CHS: Canadian Hydrographic Service; GSC: Geological Survey of Canada; GSC: Geological Survey of 
Canada. 
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Figure 22: Model domain of the Cow Bay study area showing data sources and varying resolutions. 

 

Point data were interpolated into a surface using the topographic data to raster toolset within the ESRI ArcGIS™ 

software package. The interpolation procedure used an iterative finite difference interpolation technique. It was 

designed to have the computational efficiency of local interpolation methods without losing the surface continuity 

of global interpolation methods. It is described as a discretized thin plate spline technique (Wahba, 1990) for which 

the roughness penalty has been modified to allow the fitted DEM to follow abrupt changes in terrain. A surface was 

interpolated at the highest required resolution, 3 m, for the entire model domain. A nested grid approach was 

adopted to reduce the complexity and number of required calculations to run the simulation. This technique 

effectively reduced the resolution of model input data in regions distant from the main areas of interest (AOI) by 

nesting high-resolution AOI grids within low resolution ‘background’ grids at 3:1 resolution steps resulting in a more 

efficient and stable model (Table 4, Figure 23, Figure 24, Figure 25). 
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Model Domain Cell Resolution (m) 

D0 3 

D1 9 

D2 27 

D3 81 

D4 243 

Table 4. Nested model bathymetry domains and cell resolutions. 

 

Figure 23: Nested model domains at within the Cow Bay hydrodynamic model study area at 1:3 resolution steps, 
D4: 243 m; D3: 81 m; D2: 27 m. 
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Figure 24: Nested model domains at within the Cow Bay hydrodynamic model study area at 1:3 resolution steps, 
D2: 27 m; D1: 9 m; D0: 3 m. 
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Figure 25: Cow Bay high-resolution model domains to support particle tracking scenarios. 

 

The hydrodynamic simulation was driven by tidal predictions along the open water boundaries in the largest model 

domain. These predictions were obtained using the built in tidal prediction model within Mike21™ and were driven 

by 16 global tidal constituents. The HD model was run at a 2-second simulation time-step and surface elevations, 

water depth, current magnitude, and current directions were recorded at 5-minute simulation intervals. 

 

A preliminary particle tracking (PT) model was developed to simulate the distribution of potential oil contamination 

for different dispersion scenarios using the hydrodynamic model results. Oil spills were simulated with varying wind 

and dispersion rate variables to determine how changes in these factors affected the critical distances at which 

coastal contamination, the magnitude of impact, and the timing of contamination to make landfall. The rate of 

contaminant dispersion, decay, and erosion (resuspension) were estimated based three oil classes: heavy, medium, 



33  

and light (Table 5).  

 

 

Class Description Decay 

(p/s) 

Horizontal 

Dispersion (m2/s) 

Erosion 

(N/m2) 

Type 2 Light Oils (Diesel, No. 2 Fuel Oil, Light Crudes) 1e-005 8 0.01 

Type 3 Medium Oils (Most Crude Oils) 1e-006 4 0.01 

Type 4 Heavy Oils (Heavy Crude Oils, No. 6 Fuel Oil, Bunker C) 1e-007 2 0.01 

Table 5. Simplified oil dispersion and decay characteristics for preliminary PT simulations. 

Two sources of contamination were modelled. The first sources followed the track of a tanker entering the Halifax 

Harbour at a course resolution. This scenario was developed to determine if contaminants from the defined traffic 

path would eventually reach the Cow Bay study area. The second modelled source point was located at easting, 

466500 and northing, 4938500. This source was used to determine the fate of particles that reach the outer extent 

of the mouth of Cow Bay (Figure 26). For each scenario, 10 000 particles were released to simulate dispersion. 
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Figure 26: Contaminant source location (red circle) used to simulate the fate of particles that reach the outer 
extent of the Cow Bay study area. 

 

Wind was used as a variable to affect the distribution of contamination. Three conditions were used to examine 

the effect of wind on particle distribution: a no wind scenario, 15 m/s onshore gale wind, and a 25 m/s onshore 

storm wind. In each scenario, the wind originated from 135 degrees and has a surface wind acceleration kinematic 

viscosity of 1.14e-6 m2/s. 

Each model was run from 2016/07/17 1800h to 2016/07/21 1800h at a 1-minute computational time-step where 

particles were released between 2016/07/17 1800h and 2016/07/17 2350h. Suspended and sedimented particle 

positions were recorded for each 5-minute model time-step. The simulated dispersion extents were examined over 

several tides to determine the extent and magnitude of contamination. 
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3 Results 

3.1 Lidar Validation 

Ground elevation measurements obtained using the RTK GPS system were used to validate the topographic lidar 

returns on areas of hard, flat surfaces. The GPS survey was collected along roads, trail and the beach within the 

study area (Figure 5).  

Boat-based ground truth data were used to validate the bathymetric lidar returns (blue and red dots on Figure 5). 

Although various methods were used to measure depth during fieldwork, for this report only points measured 

using the large pole fitted with the RTK GPS antenna to directly measure the seabed elevation were used for the 

accuracy assessment; points that measured depth using sonar or a weighted rope were not considered at this 

time. 

 

For both hard surface and boat-based GPS points, the differences in the GPS elevation and the lidar elevation (∆Z) 

were calculated by extracting the lidar elevation from the DEM at the checkpoint and subtracting the lidar 

elevation from the GPS elevation. GPS points were subject to a quality control assessment such that the standard 

deviation of the elevation was required to be < 0.05 m. 

 

3.1.1 Topographic Validation 
 

There were 171 points collected in the study area and were compared against the 1 m lidar derived DEM. The 

difference in elevation between the GPS and DEM was used to calculate the ∆Z. The results indicate the mean ∆Z 

of -0.12 m ± 0.07 m (1 standard deviation) (Figure 27). 

 

 
Figure 27: Topographic validation for Cow Bay. 
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3.1.2 Bathymetric Validation 
 

There were 38 points collected from vessels in the study area during the survey flight. These validation points were 

taken with a pole that had the GPS antenna mounted on the top of it and measured the seabed elevation directly. 

The orthometric height of the GPS was then subtracted from the DEM and the ∆Z calculated. The results indicate 

the mean ∆Z of -0.08m ± 0.16 m (1 standard deviation) (Figure 28). 

 

 
Figure 28: Bathymetric validation for Cow Bay 

 

3.2 Surface Models 
 

3.2.1 Digital Elevation Model 

Lidar penetration at Cow Bay was successful in the nearshore and inner bay areas of the study area, penetrating to 

a maximum of -10 m CGVD28, located outside the central area of Cow Bay (Figure 29). The water in the center of 

the bay was darker and murkier (as indicated in the ground truth maps in Figure 36 and Figure 37). Additionally, 

the water was deeper in the center of the bay, contributing to the lack of lidar penetration in that area.  
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Figure 29: Digital Elevation Model for Cow Bay, scaled to show bathymetry relief for the entire study area with 
insets showing smaller features. Insets are matched to the larger figure by border colour. 

 

3.2.2 Colour Shaded Relief 

The Colour Shaded Relief (CSR) models show the topographic relief in shades of green-red-yellow, and the 

bathymetry relief in shades of blue where darker blue represents deeper water. CSRs provide an exaggeration of 

the DSMs (Figure 30) and DEM’s (Figure 31) (5x actual height) and include artificial shading to accentuate 

topographic and bathymetric features.  
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Figure 30: Colour Shaded Relief for the DSM at Cow Bay. The map is scaled to show bathymetry relief for the 
entire study area with insets showing smaller features. Insets are matched to the larger figure by border colour. 
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Figure 31: Colour Shaded Relief for the DEM at Cow Bay. The map is scaled to show bathymetry relief for the 
entire study area with insets showing smaller features. Insets are matched to the larger figure by border colour. 

The lidar did not penetrate beyond 13 m water depth. As a result the lidar data were merged with bathymetry 
from the Canadian Hydrographic Service to provide as much detail as possible for Cow Bay (Figure 32). 
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Figure 32: Cow Bay DSM of combined lidar and bathymetry from CHS. 

 
 

3.2.3 Depth Normalized Intensity 

As mentioned previously, the energy of light exponentially decays with water depth. As a result the amplitude-

intensity of the reflected green laser pulse is influenced by this loss of energy and the grey scale image that may be 

dark because of dark features of the seabed such as vegetation or dark because of depth (Figure 33). Thus, this 

image is difficult to interpret qualitatively and not useable quantitatively. The effects of depth have been reversed 

to produce a Depth Normalized Intensity (DNI) image (Figure 33). This DNI image can now be used to interpret the 

seafloor cover material and detect information that is challenging to see in the air photos. The intensity data show 

the contrast between brightly reflected seabed cover in the green spectrum, such as sand and the dark colour of 

submerged vegetation. The DNI maps suggest the presence of sand in the center of the bay with bands of 

vegetation in the nearshore (Figure 33). 
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Figure 33: Top map is the direct amplitude-intensity image. The bottom map is the Depth Normalized Intensity 
(DNI) image from the lidar. 
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Figure 34: Depth Normalized Intensity model for Cow Bay. Typically, darker areas represent submerged 
vegetation, while brighter areas represent sand. Insets are matched to the larger figure by the red border. The 
top inset is the elevation model and the lower inset is the DNI. 

 

3.2.4 Air Photos 

Both the quality assurance camera and the RCD30 camera data were processed to produce orthophotos. The aerial 

orthophoto mosaics provide insight into land use, water clarity, bottom type, wave action, and shoreline 

morphology. The orthophoto panels show the different levels of water clarity throughout the study area. At Cow 

Bay, submerged features such as sand ripples and vegetation can be seen in the red panel. (Figure 35). 
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Figure 35: RCD30 Orthophoto Mosaic for Cow Bay with insets showing smaller features. Insets are matched to 
the larger figure by border colour. 

 

3.3 Ground Truth Maps 

The underwater photographs taken using a GoPro camera mounted to a quadrat are useful indicators of bottom 

type throughout the study area (Figure 36, Figure 37). The following sections present some of the images obtained 

during the field season displayed on the RCD30 5 cm resolution orthophoto mosaics.  
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Figure 36: Cow Bay underwater photo ground truth for the AGRG boat survey on July 6. Map is symbolized to 
show cover type. Background image is RCD30 orthophoto RGB mosaic. 

 
Figure 37: Cow Bay underwater photo ground truth for the AGRG (ECRC boat) survey on July 6. Map is 
symbolized to show cover type. Background image is RCD30 orthophoto RGB mosaic. 
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3.4 SAV and Bottom Type Maps 
 
Figures 38 to 45 depict the submerged aquatic vegetation (SAV) distribution and the complete bottom type 

classification produced by the methodology described in the Methods section. The SAV map is a simplified version 

of the full bottom cover map and depicts vegetation cover of multiple types. 

 

 
Figure 38: Map showing submerged aquatic vegetation in Cow Bay where green represents presence. Shown 
underneath the SAV data is the depth normalized intensity. 
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Figure 39: Map showing submerged aquatic vegetation in Cow Bay where green represents presence. Shown 
underneath the SAV data is the orthophoto RGB mosaic. 

The ground truth bottom photos data were classified into SAV presence and absence and used to validate the SAV 

map derived from the QA photos and lidar metrics. An 82.5% accuracy was achieved when compared between 

the ground truth data and the SAV map (Figure 40). 
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Figure 40: Map showing submerged aquatic vegetation in Cow Bay with ground truth points. Where the 
classification matched the ground truth presence and absence the points are circled. An agreement of 82.5% 
was achieved.  

The full bottom classification is a much more complicated map which involved interpreting what type of SAV 

occurs at different subtidal water levels and the substrate type was interpreted from the bottom reflectance and 

roughness (Figure 41, Figure 42, Figure 43). 
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Figure 41: Map showing bottom classification in Cow Bay. Shown underneath the SAV data is the depth 
normalized intensity image. 

 



49  

 
Figure 42: Map showing bottom classification in Cow Bay. Shown underneath the SAV data is the RGB 
orthophoto mosaic. 
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Figure 43: Map showing bottom classification in Cow Bay. Shown underneath the SAV data is the RGB 
orthophoto mosaic. 

3.5 Shoreline Classification Maps 
 

Environment Canada is responsible for mapping the shoreline with respect to identifying areas that could be 

vulnerable to contamination from a spill. They utilize an oblique video camera system and then manually interpret 

the shoreline material with follow up ground truth. In this study we examined how we could automate the process 

making use the of the RCD30 imagery and lidar metrics (Figure 44, Figure 45).  
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Figure 44: The map on the left is an example of the Environment Canada map depicting the shoreline. The map 
on the right has been simplified to match the classes and colours of the Environment Canada map and derived 
from the RCD30 and lidar data. 
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Figure 45: A close up of the EC map and that derived in this study shows that EC only uses a line whereas we 
have derived polygons covering the area. Also of note is the change in the tidal inlet position from the EC map 
ca. 1997. 

 
The following figures (46 - 51) show detailed examples of the shoreline classification using the RCD30 and lidar 

metric data from this study. 
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Figure 46: Map showing shoreline classification in Cow Bay. Shown underneath the data is the RGB orthophoto 
mosaic. 

 
Figure 47: Map showing shoreline classification near the tidal inlet in Cow Bay. Shown underneath the data is 
the RGB orthophoto mosaic. 
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Figure 48: Map showing shoreline classification in the tidal inlet at Cow Bay. Shown underneath the data is the 
RGB orthophoto mosaic. 

 
Figure 49: Map showing shoreline classification in Cow Bay. Shown underneath the data is the RGB orthophoto 
mosaic. 
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Figure 50: Map showing shoreline classification adjacent to the tidal inlet in Cow Bay. Shown underneath the 
data is the RGB orthophoto mosaic. 

 
Figure 51: Map showing shoreline classification within the saltmarsh at Cow Bay. Shown underneath the data is 
the RGB orthophoto mosaic. 
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3.6 Hydrodynamic Model Results 
 

HD models were found to produce realistic simulations of water flow and the results of these models were 

validated using ADCP data collected during the simulated period from 2016/07/17 to 2016/07/29. Simulated 

water depth was in nearly perfect agreement with observed water depth measured by the ADCP with a calculated 

Pearson Correlation Coefficient (PCC) of 0.99 (Figure 52). 

 
Figure 52: Comparison between modelled water depth and observed ADCP water depth over the July simulation 
period. 

Depth averaged current magnitudes in both the U (east - west) and V (north - south) vectors agreed poorly with 

the observed ADCP data. Current magnitude in the U vector was found to have a PCC of 0.21 when compared to 

the ADCP data (Figure 53). 
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Figure 53: Comparison between modelled depth-averaged current velocity and observed ADCP current velocity 
in the U vector. 

Similarly, the current magnitude in the V vector was found to have a PCC of 0.28 when compared to the ADCP data 
(Figure 54). 
 

 
Figure 54: Comparison between modelled depth-averaged current velocity and observed ADCP current velocity 
in the V vector. 

The poor agreement between modelled and observed current direction was determined to be due to strong 

stratification in the tidal signal (Figure 55). A rip tide forms in the area where the ADCP was deployed. The water is 

constantly moving in opposite directions over the same point on both flood and ebb tides. This is a problem for 2-

dimensional depth averaged model where the opposing magnitudes nullify each other to produce a very weak 

vector that makes comparison to ADCP observations difficult. The similarities in current magnitude are promising, 

but it is understandable that phase and direction are not well aligned. These models are preliminary and the 

conversion to a 3-dimensional HD model should be examined. Despite the shortcoming on direction and phase, HD 

results on a larger scale were determined to be acceptable for preliminary particle tracking scenarios. 
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Figure 55: ADCP measured current magnitude and directions binned by depth show the complex stratification of 
the bay over different moments of the tidal cycle noted by the red circle above each of the plots. The depth 
averaged magnitude and direction are noted by the red vector at the bottom of each plot. 

 

3.7 Particle Tracking Model Results 
 
Particle tracking models were run successfully for several potential spill scenarios. Contamination extents were 

simulated by varying horizontal dispersion and decay rates for three classes of oil: heavy, medium, and light (Figure 

56). The majority of coastline within the model domain was impacted by contamination after several hours of 
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dispersion (Figure 57). 

 

 

 
Figure 56: Heavy, medium and light oil dispersion from a simulated tanker approach trail 17.5 hours after 
release. Light oil dispersion (8 m2/s), class medium oil dispersion (4 m2/s), and class heavy oil dispersion (2 m2/s). 
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Figure 57: Heavy, medium and light oil dispersion from a simulated tanker approach trail 46.75 hours after 
release. Light oil dispersion (8 m2/s), class medium oil dispersion (4 m2/s), and class heavy oil dispersion (2 m2/s). 

 
The extent and concentration of the light oil dispersion parameter was examined in more detail. The Cow Bay 

study area was found to be heavily impacted by a potential spill along the tanker approach path after fewer than 

48 hours (Figure 58, Figure 59). 
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Figure 58: Light oil dispersion from a simulated tanker approach trail 7 hours after release. Colour gradient 
represents the concentration of light oil (dispersion 8 m2/s). 

 
Figure 59: Light oil dispersion from a simulated tanker approach trail 48 hours after release. Colour gradient 
represents the concentration of light oil (dispersion 8 m2/s). 
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Once it was determined that the Cow Bay study was potentially impacted by a spill, local particle tracking results 

were examined to determine the timing and extent of contamination over the three wind conditions. In the no 

wind condition, the hydrodynamics were in a natural state and particles made landfall after 14 hours. The 

distribution and concentration of particles were evenly distributed along the intertidal zone (Figure 60, Figure 61, 

Figure 62).  

 

 

Figure 60: Hydrodynamics within the Cow Bay area under the no wind condition. A current magnitude of 0.2 m/s 
is represented by the legend vector on the right. 
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Figure 61: Hydrodynamics and particle distribution within the Cow Bay area after 2 hours under the no wind 
condition. The orange to green color range represents the concentration of suspended particles, and the purple 
gradient denotes the concentration of sedimented particles. 
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Figure 62: Hydrodynamics and particle distribution within the Cow Bay area after 71 hours under the no wind 
condition. The orange to green color range represents the concentration of suspended particles, and the purple 
gradient denotes the concentration of sedimented particles. Particles made landfall after 14 hours. 

In the 15 m/s wind condition, the impacted and formed a counterclockwise eddy in the middle of the bay (Figure 

63, Figure 64, Figure 65). The wind forcing was strong enough to propel the oil particles against this current and 

the contamination made landfall after only 3 hours. The contamination was uniform and was limited to a 1.5 km 

section along the Cow Bay intertidal zone (Figure 65). Finally, the 25 m/s wind condition forced the contaminants 

onshore after only 1 hour along a 600 swath of coastline (Figure 66). 
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Figure 63: Hydrodynamics within the Cow Bay area under a 15 m/s onshore wind condition. A current 
magnitude of 1 m/s is represented by the legend vector on the right. 
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Figure 64: Hydrodynamics within the isolated Cow Bay estuary under a 15 m/s onshore wind condition. A 
current magnitude of 1 m/s is represented by the legend vector on the right. 
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Figure 65: Hydrodynamics and particle distribution within the Cow Bay area after 71.25 hours under a 15 m/s 
onshore wind condition. The orange to green color range represents the concentration of suspended particles, 
and the purple gradient denotes the concentration of sedimented particles. Particles made landfall after 3 
hours. 
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Figure 66: Hydrodynamics and particle distribution within the Cow Bay area after 1 hours under a 25 m/s 
onshore wind condition. The orange to green color range represents the concentration of suspended particles. 
Particles made landfall after 0.25 hours. 

4 Discussion and Conclusions 
 

The field campaign to collect airborne topo-bathymetric lidar and photography of Cow Bay was extremely 

successful. The relatively clear water conditions along the Atlantic Coast were ideal for this type of lidar technology 

and greater than 13 m of water depth were achieved. In addition to the aerial campaign, an ACDP was deployed 

for 1 month and ground truth information regarding the water clarity, seabed cover, and elevation were acquired. 

Additionally, the morphology and flow of the water from the tidal inlet was analyzed using a RiverRay ADCP. 

Analyses of the lidar and air photo data have produced mosaic datasets that reside in a GIS that were used for 

further classification of the submerged area and exposed shoreline material and the construction of a 

hydrodynamic model to simulate oil spills. 

 

Data regarding the critical distance, magnitude, and timing of impacts from potential oil spills will provide better 

information to responders to help guide restoration efforts, reduce costs and mitigate health and safety risks. The 

hydrodynamic model nearshore was possible because of the high resolution of the seamless elevation model 

derived from the lidar survey. The ability of the lidar sensor and camera to map near shore topography and 

bathymetry and sensitive habitats was evaluated and the SAV map produced an 83% accuracy when compared to 

ground truth data. Finally, hydrodynamic modeling under different wind and tidal conditions was evaluated to 
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determine the effects of the movement of oil floating on the surface. Under normal tidal conditions oil that was 

simulated to occur approximately 2 km offshore took 14 hours to make landfall and effect the tidal inlet. With the 

addition of a 30 knot landward wind added to the model changed the time from 14 hours to 3 hours for the oil to 

make landfall and effect the inlet.  This demonstrates how wind can play a significant role on the behavior of 

material floating on the surface. Overall this project will help spill responders plan for different oil spill scenarios 

and have better maps of the sensitive habitats, shoreline material, and submerged bottom cover material. Future 

phases of the project based on results from this project, may further refine the model and test these methods in 

other larger and more complex areas of sensitive tidal inlets. 
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