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Executive Summary 

A section of coastline was surveyed on July 13, 2016 with a Leica Geosystems Chiroptera II topo-bathymetric lidar sensor 

for the purpose of collecting elevation data near Scotian Halibut’s inland fish hatchery in Lower Woods Harbour, NS. The 

successful survey yielded high quality and high resolution lidar products which were used to delineate two submerged 

pipes extending from land into the nearshore adjacent to Scotian Halibut’s facility. The lidar bathymetry at 1 m resolution 

revealed the full length of one pipe (the southern pipe) but only non-definitive evidence of the northern pipe in areas not 

exposed at low tide. However, the lidar intensity of the reflected green laser off the seabed reaveled a linear pattern that 

is interpreted to be the northern pipe. Ground truth data collection occurred over three days and involved the collection 

of survey grade GPS points over land to validate the accuracy of the lidar products, as well as the collection of geolocated 

underwater video footage of transects over the suspected pipe locations. The videos were reviewed for visual evidence 

of the pipes, and GPS locations where the pipe is clearly seen were identified. Two buoys marking the ends of the pipes 

which were placed by divers independent of the survey could be seen at mid to low tide and these were used as confirmed 

pipe locations as well. In all, 13 GPS points confirmed the location of the southern pipes, and 2 GPS points – one at the 

beginning and one at the end – confirmed the location of the northern pipe. Although the northern pipe lacks confirmation 

GPS points along its length, the manner in which it was located in the lidar data, and the validation along the entire length 

of the southern pipe, lends confidence to the derived location of the northern pipe. 
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1 Introduction 

The nearshore coastal zone of Nova Scotia is an important area to many industries in the province, including both sea-

based and land-based aquaculture companies. Scotian Halibut is one such company that uses nearshore coastal waters to 

fill its on shore halibut tanks in Lower Woods Harbour, Nova Scotia. Scotian Halibut has two pipes that extend 

approximately 250-300 m into Woods Harbour. The pipes intakes fresh salt water directly into Scotian Halibut’s facility. 

However, the exact location of the pipes are not known, nor is the surrounding morphology of the seabed. Therefore, they 

are not sure if the pipes are in the ideal location. The project presented in this report is an NSERC-funded research effort 

to investigate if topo-bathy lidar could aid in identifying the location of the pipes, and to explore the possibility of moving, 

extending and/or enlarging the pipes for increased water volume intake. For this project, the Nova Scotia Community 

College (NSCC) Applied Geomatics Research Group (AGRG) used airborne topographic-bathymetric lidar to assist Scotian 

Halibut in determining the precise location of the pipes, and determining the general surrounding morphology of the 

seabed. The results from this study will assist Scotian Halibut and the other broader stakeholders in the onshore finfish 

community in providing them an avenue to remotely and precisely plan for and locate submerged infrastructure.   

This report is comprised of four main sections. In the Introduction, the study area, the survey and field data collection, 

and the results. The details of the data collection and processing are covered in Section 2 - Methods, while the lidar 

validation and products are found in Section 3 - Results. The Discussion in Section 4 discusses the effectiveness of using 

topo-bathymetric lidar technology inside a Geographic Information System (GIS) to detect submerged infrastructure, and 

the report concludes in Section 5. 

1.1 Study Area 

Scotian Halibut’s on-land halibut tanks are located in Lower Woods Harbour, in Southwest Nova Scotia. The tanks are 

housed adjacent to where the intake pipes come on shore, and the pipes extend roughly 250-300 m offshore. As the exact 

locations of the pipes were not known prior to the survey, an area much larger than the pipe extent was surveyed to 

ensure the pipes were within the area of data acquisition (Figure 1).  
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Figure 1. Lower Woods Harbour, NS (red box) is located on the South Shore along the Atlantic Ocean; the inset map 
(red outline) shows the study area (orange outline) for topo-bathy data acquisition. 
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2 Methods 

2.1 Lidar Survey 

2.1.1 Sensor Specifications and Installation 

The lidar sensor used in this study is a Chiroptera II integrated topographic-bathymetric lidar sensor equipped with a 60 

megapixel multispectral camera. The system incorporates a 1064 nm near-infrared laser for ground returns and sea 

surface and a green 515 nm laser for bathymetric returns (Figure 2). The lasers scan in an elliptical pattern, which enables 

coverage from many different angles on vertical faces, causes less shadow effects in the data, and is less sensitive to wave 

interaction. The bathymetric laser is limited by depth and clarity, and has a depth penetration rating of roughly 1.5 x the 

Secchi depth (a measure of turbidity or water clarity using a black and white disk). The Leica RCD30 camera (Figure 3) 

collects co-aligned RGB+NIR motion compensated photographs which can be mosaicked into a single image in post-

processing, or analyzed frame by frame for maximum information extraction. 

 

Figure 2. (A) Example of the Chiroptera II green laser waveform showing the large return from the sea surface and 
smaller return from the seabed. (B) Schematic of the Chiroptera II green and NIR lasers interaction with the sea 
surface and seabed (adapted from Leica Geosystems). 
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Figure 3. (a) Aircraft used for 2015 lidar survey; (b) display seen by lidar operator in-flight; (c) main body of sensor 
(right) and the data rack (left) during the 2014 sensor; (d) large red circles are the lasers; the RCD30 lens (right) and 
low resolution camera quality control (left). 

2.1.2 Lidar Survey Details 

The lidar survey was conducted on July 13, 2016. The survey was planned using Mission Pro software and flown at an 

altitude of 400 m above ground. The study area is shown in Figure 1 and a summary of survey details are found in Table 

1. The aircraft required ground-based high precision GPS data to be collected during the lidar survey in order to provide 

accurate positional data for the aircraft trajectory. For this study data were retrieved from an active control station near 

Barrington Passage (Figure 4). The station is part of the NS Active Control Network which is part of the Canadian Active 

Control System of unattended tracking stations which continuously record carrier phase and pseudorange measurements 

for all GNSS satellites within station view (Natural Resources Canada, 2015).  
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Figure 4. The Environment Canada weather station located at Baccaro Point (green bolt) was used to monitor weather 
in the area; an active control station in Barrington (blue square) was used as a reference during the flight, while an 
AGRG benchmark monument was used as a reference for 2 ground truth surveys (red square). 

 

Table 1. Lidar survey details summary. Weather information is from the Environment Canada weather station at 
Baccaro Point (location shown in Figure 4; data shown in Figure 5); tidal information is from the University of South 
Carolina tide website (http://tbone.biol.sc.edu/tide/). 

Study Area Survey Date (mm/dd/yyyy) Survey Time (UTC) Tide Wind Spd (km/hr) Wind Dir 

Lower Woods Harbour 07/13/2016 16:47 – 18:06 Mid Tide Rising 20 SW 

 

Weather observations (Figure 5) are from the Environment Canada weather station at Baccaro Point and show that wind 

speeds leading up to the survey date were typically between 15 and 25 km/hr blowing from the northwest.  The 24 hours 

prior to the lidar survey saw wind rotate counterclockwise from the SW, with winds during the survey blowing at roughly 
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15-20 km/h. These winds were blowing in an onshore direction, both leading up and during the survey, though the water 

was not stirred up enough to negatively impact the survey significantly as the water quality was not reduced greatly. 

 

Figure 5. Wind speed (top panel) and direction (middle upper panel) collected at the EC weather station at Lower Woods 
Harbour (Baccaro Point) between July 8 and 15, 2016. The middle lower panel shows a vector plot of the wind, where 
the arrows point in the direction the wind is blowing, while the bottom panel shows the tidal stage in the area over the 
same timeframe. The narrow red rectangular box indicates the lidar survey duration. 
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2.2 Elevation Data Processing 

2.2.1 Lidar processing 

2.2.1.1 Point Cloud Processing 

Once the GPS trajectory was processed for the aircraft utilizing the GPS base station and aircraft GPS observations and 

combined with the inertial measurement unit, the navigation data was linked to the laser returns and georeferenced. Lidar 

Survey Studio (LSS) software accompanies the Chiroptera II sensor and was used to process the lidar waveforms into 

discrete points. The data was then inspected to ensure there was sufficient overlap (30%) and no gaps existed in the lidar 

coverage. 

One critical step in the processing of bathymetric lidar is the ability to map the water surface. This is critical for two 

components of georeferencing the final targets that the reflected laser pulse recorded: the refraction of the light when it 

passes from the medium of air to water, and the change in the speed of light from air to water. The LSS software computes 

the water surface from the lidar returns of both the topo and bathy lasers. In addition to classifying points as land, water 

surface or bathymetry, the system also computes a water surface that ensures the entire area of water surface is covered 

regardless of the original lidar point density. As mentioned, part of the processing involved converting the raw waveform 

lidar return time series into discrete classified points using LSS signal processing; points included ground, water surface, 

seabed, etc. Waveform processing may include algorithms specifically for classifying the seabed. The points were 

examined in LSS both in plan view and in cross-section view. The waveforms were then queried for each point so that the 

location of the waveform peak could be identified and the type of point defined, for example water surface and 

bathymetry. 

Terrascan was utilized to further classify and filter the lidar point cloud. Because of the differences in the lidar footprint 

between the topographic and bathymetric sensors (topographic footprint has a 0.15 m and bathymetric footprint a 1.6 m 

diameter on the ground) it was decided that the bathymetric laser point returns were used to represent the water surface 

and bathymetry points and the topographic lidar points would be used to represent targets above ground. The total point 

cloud that utilized both sensors was processed in Terrascan where the ground was classified and erroneous points both 

above and below the ground were defined. Please see the Data Dictionary, which has been delivered as a separate 

document, for point classification codes.  

2.2.1.2 Gridded Surface Models 

There are three main data products derived from the lidar point cloud. The first two are based on the elevation and include 

the Digital Surface Model (DSM) which incorporates valid lidar returns from vegetation, buildings, ground and bathymetry 

returns, and the Digital Elevation Model (DEM) which incorporates ground returns above and below the water line. The 

third data product is the intensity of the lidar returns, or the reflectance of the bathy laser. The lidar reflectance, or the 

amplitude of the returning signal from the bathy laser, is influenced by several factors including water depth, the local 



Enhanced Subtidal Infrastructure Assessment to Support Inland Finfish Aquaculture 
 

Applied Geomatics Research Group Page 8 
  

angle of incidence with the target, the natural reflectivity of the target material, and the voltage or gain of the transmitted 

lidar pulse. 

The original reflectance data are difficult to interpret because of variances as a result of water depth and loss of signal due 

to the attenuation of the laser pulse through the water column at different scan angles, as well as lack of bottom 

reflectivity.  

2.2.1.3 Aerial Photo Processing 

The low altitude and high resolution of the imagery required that the lidar data be processed first to produce bare-earth 

DEMs that were used in the orthorectification process. The RCD30 60 MPIX imagery was processed using the aircraft 

trajectory and direct georeferencing. The aircraft trajectory blends the GPS position and the IMU attitude information into 

a best estimate of the overall position and orientation of the aircraft during the survey. This trajectory, which is linked to 

the laser shots and photo events by GPS based time tags, was s used to define the Exterior Orientation (EO) for each of 

the RCD30 aerial photos that were acquired. The EO, which has traditionally been calculated by selecting ground control 

point (x, y, and z) locations relative to the air photo frame and calculating a bundle adjustment, was calculated using direct 

georeferencing and by exploiting the high precision of the navigation system. The EO file defines the camera position (x, 

y, z) for every exposure as well as the various rotation angles about the x, y and z axis known as omega, phi and kappa. 

The EO file along with a DEM can be used with the aerial photo to produce a digital orthophoto. After the lidar data were 

processed and classified into ground points, the lidar-derived DEM (above and below the water line) was used in the 

orthorectification process in Erdas Imagine software and satisfactory results were produced.  

The original elevation of any lidar products are referenced to the same elevation model as the GPS they were collected 

with. This model is a theoretical Earth surface known as the ellipsoid, and elevations referenced to this surface are in 

ellipsoidal height. To convert them to orthometric height (OHt), which is height relative to CGVD28, an offset must be 

applied. The conversions were calculated based on the geoid-ellipsoid separation model, HT2, from Natural Resources 

Canada. 

2.2.1.4 Depth Map Generation 

Depth maps were produced by subtracting valid bathymetric elevations from the measured water surface.  

2.2.1.5 Depth Normalization of the Green Laser 

The amplitude of the returning signal from the bathy laser provides a meanas of visualizing the seabed cover, and is 

influenced by several factors including water depth and clarity, the local angle of incidence with the target, the natural 

reflectivity of the target material, and the voltage or gain of the transmitted lidar pulse. The raw amplitude data are 

difficult to interpret because of variances because of signal loss due to the attentuation of the laser pulse through the 

water column at different scan angles. Gridding the amplitude value from the bathy laser results in an image with a wide 

range of values that are not compensated for depth and have significant differences for the same target depending on the 
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local angle of incidence from flight line to flight line. As a result, these data are not suitable for quantitative analysis and 

are difficult to interpret for qualitative analysis. A process has been developed to normalize the amplitude data for signal 

loss in a recent publication (Webster et al., 2016). The process involved sampling the amplitude data from a location with 

homogeneous seabed cover (eg., sand or eelgrass) over a range of depths. These data were used to establish a relationship 

between depth and the logarithm of the amplitude value. The inverse of this relationship was used with the depth map 

to adjust the amplitude data so that they could be interpreted without the bias of depth. A depth normalized 

amplitude/intensity image (DNI) was created using this technique that can be more consistently interpreted for 

submerged features such as pipes. Note that this analysis considers only bathymetric lidar values and ignores any 

topographic elevation points.   

2.3 Deriving Pipe Locations 

The 1 m lidar topo-bathymetric DEM was visually assessed for evidence of any linear structures emanating from the shore 

near the Scotian Halibut facility into the nearshore. Several hillshaded models were constructed by introducing a sun angle 

to the lidar elevation data, which accentuates any patterns or features in the topography or bathymetry (Figure 6a&b). 

Features that appeared to be part or all of both pipes were identified and digitized into a line shapefile (Figure 6d). The 

pipes are hence referred to as the northern pipe and the southern pipe (as labeled in the figure). In addition, the depth 

normalized intensity (DNI) was visually investigated for signs of the pipes, and an additional section of the northern pipe 

was digitized (Figure 6c). The lines running north to south in the elevation maps (CSRs) are minor artifacts in seabed 

elevation resulting from the north-south flightlines during the survey.  
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Figure 6. Colour shaded reliefs (CSR) using different superimposed sun angles - an angle of 315° (a) and 225° (b), as well 
as the depth-normalized intensity (DNI) (c), and with the derived pipe locations shown on the 315° CSR (d). 
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2.4 Ground Truth Data Collection 

Three missions were carried out to obtain geolocated ground truth data for the purposes of assessing the vertical quality 

of the lidar results, and to confirm the location of the submerged portion of the pipes using underwater video and survey 

grade GPS for high accuracy location. A summary of the ground truth missions can be found in Table 2. 

Table 2. A summary table of the three data collection missions executed by AGRG. For all missions the GPS corrections 
were received from the SmartNet cellphone network using a Leica GS14 GPS system. 

Date Base station (id) 
GPS System  Underwater Photos  Hard Surface GPS  

(GS14 or 530/1200) (see caption for options) (Y or -) 

15-Aug SmartNet GS14 - Y 

22-Sep SmartNet GS14 GoPro Y 

3-Oct SmartNet GS14 SeaViewer Video Y 
 

On August 15, 2016, AGRG consulted with Scotian Halibut regarding the project on site at the Scotian Halibut facility in 

Lower Woods Harbour. At that time, GPS points were taken in the area on flat, hard surfaces around the facility to compare 

with the elevation of the resulting elevation models. Additionally, low tide that day exposed the pipes along the shore, so 

GPS points were collected of the exposed portion of the pipes (Figure 7). A  Real-time Kinematic (RTK) GPS system 

referencing a nearby active control station was used to collect the GPS data. Two additionally surveys – one on September 

22 and one on October 3 - were conducted to collect additional hard surface RTK GPS points as well collect the underwater 

video from AGRG’s 14’ aluminum boat. On September 22, issues with power supply prevented the SeaViewer underwater 

video camera from being used for data collection, so in lieu a waterproof GoPro camera was attached to a large pole and 

set to record video. On October 3 the power supply issue was resolved and video was collected with the SeaViewer video 

camera. While the SeaViewer video camera was connected to a handheld GPS device that provided a latitude and 

longitude, an RTK GPS unit was used to track the movement of the boat for a more accurate location.  The boat survey 

attempted to gain confirmation of the pipes by observing the location of the pipes on the seabed. Numerous transects 

were completed over the suspected locations of the pipes (Figure 9), and subsequently the underwater video was used to 

construct points where the pipe was located (more about this in Section 2.3).  
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Figure 7. The on-shore extent of the pipes to be surveyed. The picture is taken looking due southeast, thus the pipe on 
the right is the southern pipe, and the pipe on the left is the northern pipe. Picture taken on August 15, 2016. 
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Figure 8. The pipes are exposed at low tide, as can be seen in this picture (a) and outlined (b) taken from the water on 
Oct 3. In these images the northern pipe is on the left and the southern pipe is on the right.  
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Figure 9. Ground truth data collected on Aug 15, Sept 22, and Oct 3. Hard surface validation was collected on Sept 22 
at the Lower Woods Harbour Wharf (b) and at the Scotian Halibut facility on Aug 15 (c). 
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2.5 Pipe Confirmation from Ground Truth Data 

Each video segment was watched and assessed visually for signs of the pipe. The moment the boat drove over the pipe, 

as evidenced in the video (Figure 10), the corresponding RTK GPS point was selected and treated as a confirmed location. 

As can be seen in this figure, the pipe is covered with a thick mat of fucus and other submerged aquatic vegetation. 

 

Figure 10. A screenshot of the southern pipe taken from the underwater GoPro video collect done on September 22. 

2.6 Validation 

Hard surface validation RTK GPS data were collected on two separate dates – August 15 and September 22. On both days 

the base station corrections were being received from the SmartNet cell phone network. On August 15, RTK GPS points 

were taken adjacent to the Scotian Halibut facility in Lower Woods Harbour. The points were taken along the shore (since 

the tide was low and the pipes were exposed) and adjacent to the facility’s parking lot. On September 22, GPS points were 

taken along the Lower Woods Harbour wharf not far from the Scotian Halibut facility and still within the study area.  

In addition to the hard surface validation points, nearshore bathymetric points were collected using RTK GPS to directly 

measure the bathymetry with a large metal pole. The offset of the pole was applied to each RTK GPS point to ensure the 

elevation being compared with the DEM is the elevation of the bathymetry.  

All RTK GPS points were subject to a quality control assessment such that the standard deviations of the Easting, Northing, 

and elevation were required to be < 0.05 m. All RTK GPS points exceeding this quality were omitted from the validation 

results. The elevation of these RTK GPS points were compared with the elevation of the lidar DEM, such that: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝛥 𝑧) = 𝑅𝑇𝐾 𝐺𝑃𝑆 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑖𝑑𝑎𝑟 𝐷𝐸𝑀 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 
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3 Results 

3.1 Lidar Products 

This section presents Colour Shaded Relief Models (CSRs) for the DEM (Figure 11) and DSM (Figure 12) for the whole study 

area. Figure 13 shows the 0.05 m true-colour composite imagery collected at the same time as the lidar survey using an 

RCD30 camera system. The lidar penetrated to -10.6763 m CGVD28 near the outer harbour and in the channel leading 

into the Lower Woods Harbour wharf, which is equivalent to -11.747 m in depth during the lidar survey (Figure 14). The 

DNI for the study area is shown in Figure 15. 
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Figure 11. An elevation-coloured hillshaded relief of the digital elevation model. 
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Figure 12. An elevation-coloured hillshaded relief of the digital surface model. 
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Figure 13. A true colour composite of the 0.05 m RCD30 aerial photo orthomosaic collected during the lidar survey on 
July 13, 2016.  
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Figure 14. The depth of the water at the time of the lidar survey on July 13, 2016 shows the lidar penetrated a maximum 
of 11.747 m. The depth information here is shown on the greyscale hillshade of the DEM.  
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Figure 15. The depth normalized intensity for the study area. The depth information here is shown on the greyscale 
hillshade of the DSM. 
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3.2 Lidar Validation 

There were 55 data points collected on hard surfaces to be used for topographic lidar validation; the mean difference (∆Z) 

between the RTK points and the DEM was -0.0813 m with a standard deviation of 0.1098 m, well within the specifications 

of the lidar system (Figure 16). Since mean ∆Z is negative, this suggests that the DEM points are on average slightly higher 

than the RTK GPS values. 

 

Figure 16. The overall topograhic validation dataset (a), collected on September 22 (b) and August 15 (c), shows a mean 
difference from the lidar DEM of -0.08 m with a standard deviation of 0.11 m. 
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3.3 Ground Truth Results 

In total, two videos were recorded – one on September 22 and one on October 3 – in which the pipes were detected and 

geolocated in both videos. In both videos the southern pipe was visible on the seabed as a long, linear feature mostly 

covered in vegetation while the northern pipe was not visible at any submerged location. Thus, numerous confirmed 

locations were collected for the southern pipe. Only two RTK GPS points confirmed the location of the northern pipe, 

which was the topographic GPS point taken on August 15 at low tide while at the facility and the GPS point of the buoy 

marking the end of the pipe taken on September 22. The confirmed locations relative to the suspected locations on the 

pipe is discussed more in the next section.  

3.4 Pipe Location & Validation 

Visual examination of CSRs constructed from various azimuth illumination angles revealed two linear features emanating 

from the exposed shoreline at the Scotian Halibut facility. One feature, the northern pipe, can be seen in the CSR only in 

the intertidal area, while the other feature, the southern pipe, can be seen curving and extending much deeper into the 

nearshore (Figure 17). Investigation of the DNI showed an additional section of the northern pipe which is not visible in 

the CSR (Figure 18), which connects the portion of pipe seen in the CSR (which is also visible in the DNI) and makes a 

curve before straightening out to extend further out.  
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Figure 17. Visual analysis of a coloured, hill-shaded relief (315° sun angle) of the DEM (a) shows two linear features 
extending from the land into the nearshore (outlined in b). 
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Figure 18. Visual analysis of the depth normalized intensity (a) shows two linear features extending from the land into 
the nearshore (outlined in b). Shown on true colour RCD30 imagery taken the day of the survey.  
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To confirm the suspected location of the pipes, two videos were recorded – one on September 22 and one on October 3 

– in which one of the pipes was detected and geolocated in both videos. In both videos the southern pipe was visible on 

the seabed as a long, linear feature mostly covered in vegetation (Figure 10) while the northern pipe was not visible at 

any submerged location. However, Thus, numerous confirmed locations were identified from the videos for the southern 

pipe while none were identified from the videos for the northern pipe. All visual confirmations of the southern pipe were 

screenshot and the GPS points recorded and compared with the suspected locations (Figure 19). In all, two RTK GPS points 

collected on land verify the suspected location of the pipes nearshore (Figure 19, 1-1 & 2-1); two points along the southern 

pipe were confirmed from the GoPro video; finally, nine points along the southern pipe were confirmed from SeaViewer 

video. Finally, two RTK GPS points collected at the marker buoys verify the end points of both suspected pipes (the line of 

the northern pipe marker buoy is shown in Figure 19, 2-13). Overall the 13 confirmed locations of the southern pipe agree 

very well, and the 2 confirmed locations for the northern pipe agree very well with the pipes derived from the lidar-derived 

products.  

The depth of the water (at the time of the survey) over the deepest section of pipe was between 6-7 m (Figure 20). Finally, 

the length of the northern pipe remotely surveyed is 261 m while the length digitized for the southern pipe is 303 m 

(Figure 20). 
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Figure 19. The suspected pipe locations (white line) and confirmed pipe locations (red and yellow dots). RTK GPS points 
for locations 1-1 and 2-1 were collected from land at low tide. Locations 1-2 and 2-13 (including image 2-13) were the 
GPS locations and picture of the buoy line marking the end of each pipe. 
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Figure 20. The depth of the water at the time of flight shows the pipe was detected even in up to 6-7 m of water. 
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4 Discussion 

The topo-bathymetric lidar mission on July 13 was successful and various high quality, high resolution products were 

derived from the lidar data. Two pipes were located from the bathymetric lidar data – in one case the pipe extended to a 

depth of between 6-7 metres. Three ground truth missions were undertaken, with underwater video captured being more 

successful on October 3 than on September 22. The underwater video collection on October 3 was more successful than 

that on Sept 22 for two reasons. First, the water level was much lower (low tide on Oct 3 compared with high tide on Sept 

22) so our video attachment could reach deeper into the water. Also, we had no power problems with the SeaViewer 

video camera on October 3rd like we did on September 22.  

While transects were completed over both the northern and the southern pipes, only the southern pipe was able to be 

located in any video footage. Considering most of the northern pipe was not detected using the elevation data this would 

indicate that the pipe does not stick out vertically compared with its surroundings. Instead, the pipe was detected using 

the depth normalized intensity data, indicating that the composition of the vegetation or other seafloor materials appears 

different along the length of the pipe than it does directly adjacent to the pipe. Considering the pipe does not appear to 

have a strong topographic expression based on the lidar data, and is likely to be covered with vegetation, a linear strip of 

submerged vegetation surrounded by other vegetation would be very difficult to identify in a video with no vertical 

displacement of the pipe to suggest there is a feature of interest located there.  

Despite the lack of confirmed GPS points to validate the location of the entire northern pipe , the full extent of the southern 

pipe was surveyed, mapped, and its location confirmed using underwater video and survey grade GPS. The southern pipe 

is also visible in the same manner as the northern pipe in the DNI. This fact, combined with the two confirmed GPS points 

for the northern pipe (one at each end), gives some confidence in the results of the location of the northern pipe despite 

lacking underwater video evidence.  

Overall, the results show that topo-bathymetric lidar is a powerful tool that can be utilized to map submerged 

infrastructure. Topo-bathy lidar provides not just elevation data but also reflected intensity data which in this case was 

the only lidar dataset in which the northern pipe could be detected.  Lidar’s ability to penetrate the water column and 

survey the bathymetry at a high resolution holds a lot of potential for other  submerged infrastructure mapping projects. 

However, a better way of confirming the location of submerged infrastructure that may be fully covered in vegetation and 

has no vertical relief should be investigated to provide more confidence in the results. 
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5 Concusion 

The lidar mission conducted in Lower Woods Harbour on July 13, 2016 resulted in high resolution elevation models (DEM 

and DSM), an orthophoto mosaic of the area, and a depth normalized intensity map of Woods Harbour. The seamless 

topographic-bathymetric DEM was validated for accuracy using survey grade RTK GPS and found to be within the 

specifications of the lidar sensor. Additional lidar products were produced, such as the elevation-coloured hillshaded 

reliefs and the depth normalized intensity image. These lidar products were used to successfully interpret the location of 

the full length of both of Scotian Halibut’s pipes. Ground truth data collected over three dates confirmed the high quality 

of the elevation products and also confirmed the locations of the two pipes, with 2 RTK GPS points taken at marker buoys 

confirming the end points of both speculated pipes; 11 points along the southern line confirmed via recorded and 

geolocated underwater video; and 2 final RTK GPS points collected over both pipes on land at a very low tide.   

This project demonstrates the potential for locating submerged infrastructure using topo-bathymetric lidar.  
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